powers on base 10 and their applications
To multiply by 10 we add a zero.
Example: 50 · 10=500
To calculate a power on base 10 we write 1 and as many zeros as the index.
Example: 107 = 10.000.000
Polynomial decomposition is the decomposition in which each order of units is represented by a power on base 10.
Example:
23.816 = 2 · 104+ 3 · 103 + 8 · 102 + 1 · 10 + 6
Exercises:
1.- Match these expressions:
a.103 A.One billion I)10.000.000
b.107 B.Ten hundreds II)1.000.000.000.000.000
c.109 C.One million thousands III)1.000.000.000
d.1012 D.One thousand billion IV)1.000
e.1015 E.Ten million V)1.000.000.000.000
2.- Write the polynomial decomposition of these numbers:
a) 8531
b) 305.020
c) 92.475
3.- Write the number which expresses each polynomial decomposition:
a) 7·106+5·104+1·10³+2·10²+8=
b) 1·108+1·106+3·105+8·102=
Solutions:
1.- a-B-IV;b-E-I; c-C-III; d-A-V; e-D-II
2.- a) 8·103+5·102+3·10+1; b) 3·105+5·103+2·10; c) 9·104+2·103+4·102+7·10+5
3.- a) 7.051.208; b) 101.300.800
Licensed under the Creative Commons Attribution Non-commercial Share Alike 3.0 License