operations with monomials
A. ADDITION AND SUBTRACTION
We can only add or subtract like monomials. Then we add or subtract the coefficients of the monomials and put the same literal part.
Example:
3x + 4x = 7x
5abc2 – 4abc2 = abc2
x + x2 = x + x2
B. MULTIPLICATION
3x · 5x = 3 · 5 · x · x = 15x2
-3b · 2b2 = -6b3
To multiply a monomial by an addition, we use the distributive property:
3·(x + 2) = 3·x + 3·2 = 3x + 6
2x·(x + 1) = 2x·x + 2x·1 = 2x2 + 2x
Exercise: reduce:
a) x + y + 3x - 2y - 5x + y =
b) x3 -3x + 2x2 - 5x + 2x3 - x2 + 8x =
c) x + 3 - (2x + 5) + 15x - 8 =
d) a - (b - 3a) + (a + b) - (8a - 9b) =
e) 3x2y · 2xy3 =
f) (-2abc3)·(-3a3b2) =
g) x·(2x + 3) =
h) a·(2a - 3b3) =
Solutions: a) -x; b) 3x3 + x2; c) 14x - 10; d) -3a + 9b; e) 6x3y4; f) 6a4b3c3; g) 2x2 + 3x; h) 2a2 - 3ab3
Licensed under the Creative Commons Attribution Non-commercial Share Alike 3.0 License