Exam

Exam

1.- Which is the rank of this matrix:


a) 1

b) 2

c) 3

d) 4


2.- Which is the rank of this matrix:


a) 1

b) 2

c) 3

d) 4


3.- Discuss the rank of this matrix depending on the value of m:


a) rk = 3 if m ≠ 2; rk = 2 if m = 2

b) rk = 2 if m ≠ 2; rk = 3 if m = 2

c) rk = 3 if m ≠ 1; rk = 2 if m = 1

d) rk = 3 if m ≠ -2; rk = 2 if m = -2


4.- Discuss this system by using the Rouché-Fröbenius Theorem:


a) Independent system

b) Dependent system

c) Inconsistent system

d) Independent system; x = y = z = 0


5.- Discuss this system by using the Rouché-Fröbenius Theorem:


a) If k = 1 inconsistent system; if k ≠ 1 independent system

b) If k = -1 inconsistent system; if k ≠ -1 independent system

c) If k = 3 dependent system; if k ≠ 3 independent system

d) Independent system k € R


6.- Discuss this system by using the Rouché-Fröbenius Theorem:


a) If k = 1 dependent system; if k ≠ 1 independent system

b) If k = -1 inconsistent system; if k ≠ -1 independent system

c) If k = -1 dependent system; if k = 1 inconsistent system; if k € R-{-1,1} independent system

d) If k = -1 inconsistent system; if k = 1 dependent system; if k € R-{-1,1} independent system


7.- Discuss this system by using the Rouché-Fröbenius Theorem:


a) If a = 2 and b = 1 dependent system; if a = 2 and b ≠ 1 inconsistent system; if a ≠ 2 independent system

b) If a = 2 and b = 1 inconsistent system; if a = 2 and b ≠ 1 dependent system; if a ≠ 2 independent system

c) If a = 2 inconsistent system; if a ≠ 2 independent system

d) If a = 2 and b = -1 dependent system; if a = 2 and b ≠ -1 inconsistent system; if a ≠ 2 independent system


8.- Solve by using Cramer's rule:


a) x = y = z = 0

b) x = y = z = λ; λ € R

c) x = 2λ; y = z = λ; λ € R

d) x = z = λ; y = -λ; λ € R


9.- Solve by using Cramer's rule:


a) x = z = λ; y = -7λ; λ € R

b) x = 27/23; y = -17/46; z = 9/46

c) x = -3; y = 4; z = 0

d) x  = 2; y = 1; z = -2


10.- Solve by using Cramer's rule for the values of k that make the system consistent:


a) x = -k; y = k/2; z = 2k/7

b) x = (1-k2)/(k2+1); y = -(k2+k)/(k2+1); z = k2/(k2+1)

c) x = (1-k2)/(k2+1); y = (k2+k)/(k2+1); z = -k2/(k2+1)

d) x = 7; y = k2 + k; z = (k+1)/(k2+1)


Licensed under the Creative Commons Attribution Non-commercial Share Alike 3.0 License