Relative positions
A. TWO PLANES
- If rk(A)=rk(A*)=1 → coincident planes
- If rk(A)=1≠2=rk(A*) → parallel planes
- If rk(A)=rk(A*)=2 → intersecting planes
rk(A)=1≠2=rk(A*) → parallel planes
rk(A)=rk(A*) =2 → intersecting planes
B. A PLANE AND A STRAIGHT LINE
Example 3:
rk(A)=rk(A*)=2 → line into the plane
Example 4:
rk(A)=rk(A*) =3 → intersecting ones
C. TWO STRAIGHT LINES
Example 5:
rk(A)=3≠4=rk(A*) → skew lines
Example 6:
rk(A)=rk(A*) =3 → intersecting ones
D. THREE PLANES
rk(A)=2≠3rk(A*)→ they from a prism
rk(A)=rk(A*) =3 → intersecting ones
Exercises:
1.- Study the relative position of the plane π: x + 2y - 1 = 0 and the straight line r:
2.- Study the relative position of the lines r and s, where:
Solutions: 1) Parallel ones; 2) Intersecting lines
Obra colocada bajo licencia Creative Commons Attribution Non-commercial Share Alike 3.0 License