Primitive Calculus
Integration by parts
∫u dv = u·v - ∫v du
Demonstration: There is a formula for the differentials analogue to the formula of the derivatives (u·v)’ = u·v’ + u’·v
d(u·v) = du · v + u · dv
then if we integrate it
∫d(u·v) = ∫v du+∫u dv and if we work out:
∫u dv = u·v - ∫v du QED
Examples:
Exercise. Solve the following integrals:
a) ∫x·cosx dx =
b) ∫x3ex dx =
Solutions: a) x·sinx + cosx + k; b) ex(x3 - 3x2 + 6x -6) + k
Licensed under the Creative Commons Attribution Non-commercial Share Alike 3.0 License