Saltar la navegación

Operations with functions

We define the addition, subtraction, multiplication and division of functions as:


· (f ± g)(x) = f(x) ± g(x)

· (f · g)(x) = f(x) · g(x)


· (f/g) (x) = f(x)/g(x)     (if g(x)≠0)


Example: if f(x) = x2 -2 and g(x) = 3x + 2, then:

(f + g)(x) = f(x) + g(x) = x2 + 3x


(f - g)(x) = f(x) - g(x) = x2 – 3x - 4


(f · g)(x) = f(x) · g(x) = 3x3 + 2x2 – 6x - 4


(f/g) (x) = f(x)/g(x) = (x2 -2)/(3x + 2),  if x ≠ -2/3


Function composition is the application of one function to the results of another. It is represented by g°f, and we say “f composed with g”.
    g°f(x) = g(f(x))   (if f(x) € Dom g)
    

Example: if  f(x) = x + 1; g(x) = x2, then:
    

 g°f(x) = g(f(x)) = g(x + 1) = (x + 1)2 = x2 + 2x +1


 f°g(x) = f(g(x)) = f(x2) = x2 + 1


NOTE: As you can see, the function composition doesn’t follow the commutative property:   
            g°f ≠ f°g


An inverse function of f is a function that undoes another function, that is, it is a function f-1 such that   

f° f-1(x) = f-1 °f (x) = i(x) = x


Example 1: if  f(x) = x2, then f-1(x) = √x, because


    f° f-1(x) = f(√x) = (√x)2= x


    f-1 °f (x) = f-1(x2) = √x2 = x


Example 2: if  f(x) = 1/x, then f-1(x) = 1/x, because


    f° f-1(x) = f(1/x) = 1/(1/x)= x


    f-1 °f (x) = f-1(1/x) = 1/(1/x)= x


Example 3: find the inverse function of f(x) = √(2x)


    x = √(2y) → x2 = 2y → y = f-1(x) = x2/2


NOTE: inverse functions are symmetric and their axis of symmetry is the line: y = x

 

 

Exercises:

1.- Let f(x) = x2 + 2 and g(x) = x - 2. Calculate:

a) (f + g)(x)

b) (f - g)(x)

c) (f · g)(x)

d) (f/g)(x)

e) (g º f)(x)

f) (f º g)(x)

 

2.- Find out the inverse function of these functions:

a) f(x) = x2 - 7

b)  

 

 

 

Solutions:

1.- a) y = x2 + x; b) y = x2 - x +4; c) y = x3 - 2x2 + 2x - 4; d) y = (x2 + 2)/(x -2); e) y = x2; f) y = x2 - 4x + 6

2.- a) y = √(x+7); b) y = (-7x)/(x-3)