Operations with functions
We define the addition, subtraction, multiplication and division of functions as:
· (f ± g)(x) = f(x) ± g(x)
· (f · g)(x) = f(x) · g(x)
· (f/g) (x) = f(x)/g(x) (if g(x)≠0)
Example: if f(x) = x2 -2 and g(x) = 3x + 2, then:
(f + g)(x) = f(x) + g(x) = x2 + 3x
(f - g)(x) = f(x) - g(x) = x2 – 3x - 4
(f · g)(x) = f(x) · g(x) = 3x3 + 2x2 – 6x - 4
(f/g) (x) = f(x)/g(x) = (x2 -2)/(3x + 2), if x ≠ -2/3
Function composition is the application of one function to the results of another. It is represented by g°f, and we say “f composed with g”.
g°f(x) = g(f(x)) (if f(x) € Dom g)
Example: if f(x) = x + 1; g(x) = x2, then:
g°f(x) = g(f(x)) = g(x + 1) = (x + 1)2 = x2 + 2x +1
f°g(x) = f(g(x)) = f(x2) = x2 + 1
NOTE: As you can see, the function composition doesn’t follow the commutative property:
g°f ≠ f°g
An inverse function of f is a function that undoes another function, that is, it is a function f-1 such that
f° f-1(x) = f-1 °f (x) = i(x) = x
Example 1: if f(x) = x2, then f-1(x) = √x, because
f° f-1(x) = f(√x) = (√x)2= x
f-1 °f (x) = f-1(x2) = √x2 = x
Example 2: if f(x) = 1/x, then f-1(x) = 1/x, because
f° f-1(x) = f(1/x) = 1/(1/x)= x
f-1 °f (x) = f-1(1/x) = 1/(1/x)= x
Example 3: find the inverse function of f(x) = √(2x)
x = √(2y) → x2 = 2y → y = f-1(x) = x2/2
NOTE: inverse functions are symmetric and their axis of symmetry is the line: y = x
Exercises:
1.- Let f(x) = x2 + 2 and g(x) = x - 2. Calculate:
a) (f + g)(x)
b) (f - g)(x)
c) (f · g)(x)
d) (f/g)(x)
e) (g º f)(x)
f) (f º g)(x)
2.- Find out the inverse function of these functions:
a) f(x) = x2 - 7
b)
Solutions:
1.- a) y = x2 + x; b) y = x2 - x +4; c) y = x3 - 2x2 + 2x - 4; d) y = (x2 + 2)/(x -2); e) y = x2; f) y = x2 - 4x + 6
2.- a) y = √(x+7); b) y = (-7x)/(x-3)
Obra publicada con Licencia Creative Commons Reconocimiento No comercial Compartir igual 3.0